High Q^2 results from HERA

G. Cozzika CEA/Saclay-DAPNIA/SPP

on behalf of the

Collaborations

PIC2000 Lisbon, Portugal June 29 - July 1, 2000

Overview

HERA : **unique e-p collider** → study Deep Inelastic Scattering (DIS)

> (27.6 GeV) $e^{\pm} \implies \bullet \iff p$ (820 GeV) In 1998 proton energy : 820 GeV \nearrow 920 GeV

 $\hookrightarrow \sqrt{S}$ increased from 300 GeV to 320 GeV

H1 and ZEUS have data covering 1994 to spring 2000. Each experiment has recorded about 100 pb⁻¹ of data $(80 \text{ pb}^{-1} \text{ e}^+\text{-p} \text{ and } 20 \text{ pb}^{-1} \text{ e}^-\text{-p})$

This talk : High Q^2 domain ($\geq 1000 \text{ GeV}^2$)

- Inclusive Cross-sections
 - Neutral Current (NC)
 - Charged Current (CC)
 - Attempts to interprete deviations wrt Standard Model
- W production
 - High P_T isolated leptons

e - p DIS Kinematics

Variables :

- Q^2 = Squared Four Momentum Transfer
- x = Fractional parton momentum
- y = Inelasticity
- s = Squared C.M. Energy
- M^2 = Squared Lepton-parton invariant mass

$$Q^2 = xys = My$$

Physics Motivations

- Probe the proton down to $d \sim 1/Q \sim 10^{-18}$ m
- Probe physics in a region where electromagnetic (γ) and weak (W,Z) interactions are of comparable strength
- \implies Test the Standard Model with our highest Q^2 data \implies Study eventual deviations from the SM at high Q^2

Most of kinematically accessible plane now covered

The Data

- 07/99 05/2000 (continue to 09/2000)

High int. luminosities \Rightarrow statistics in high Q² domain

 \rightarrow study both e⁺-p and e⁻-p interactions for 1st time

INTEGRATED LUMINOSITY (29.05.00)

High Q^2 results from HERA - PIC2000

- Charged track with EM energy associated to it
- Hadronic energy (jet)

Main Event Selection Criterion :

Electromagnetic energy in LAr Calorimeter

Overconstrained kinematics \implies good determination of e and jet parameters (angle, energy deposition)

$d\sigma/dQ^2$ NC : e^+ -p vs e^- -p data

- HERA data : agree with pQCD on wide Q² range
- $d\sigma/dQ^2$ drops by ~ 7 orders of magn. over 2 orders in Q^2
- $\sigma(e^--p) > \sigma(e^+-p)$ at $Q^2 \ge 5000 \text{ GeV}^2$, due to $\oplus \gamma/Z$ interference in e^--p (\ominus in e^+-p)

NC $d\sigma/dQ^2$ Compared to Standard Model

High Q^2 results from HERA - PIC2000

NC e⁺p and e⁻p $d\sigma/dx$

Define reduced NC cross section :

$$\tilde{\sigma}_{NC} = x \frac{Q^4}{2\pi\alpha^2 Y_+} \frac{d^2\sigma^{NC}}{dxdQ^2}$$
$$Y_+ = 1 + (1-y)^2$$

ZEUS NC 1998–99

Extraction of xF_3 from $\tilde{\sigma}(e^+p)$ and $\tilde{\sigma}(e^-p)$

Reminder :

$$rac{d^2\sigma^{NC}_{Born}}{dxdQ^2} = rac{2\pilpha^2}{xQ^4}(Y_+F_2(x,Q^2)-y^2F_L(x,Q^2)\mp Y_-xF_3(x,Q^2)))$$
with $Y_\pm = 1\pm(1-y)^2$

- sign of xF_3 term depends on lepton charge
- $y^2 F_L$ contribution negligible at high Q^2

Data sets used here (

σ⁺ (1996 - 1997) e⁺ -p (820 GeV) 30 pb⁻¹
σ⁻ (1998 - 1999) e⁻ -p (920 GeV) 16 pb⁻¹

Different E_p (proton beam energies) \implies need $Y_{\pm}^{E_p}$

$$\sigma^{+} = \frac{2\pi\alpha^{2}}{xQ^{4}} \cdot \left(Y_{+}^{820} \cdot F_{2} - Y_{-}^{820} \cdot \mathbf{xF_{3}}\right)$$
$$\sigma^{-} = \frac{2\pi\alpha^{2}}{xQ^{4}} \cdot \left(Y_{+}^{920} \cdot F_{2} + Y_{-}^{920} \cdot \mathbf{xF_{3}}\right)$$

 \Longrightarrow Using reduced cross sections $ilde{\sigma},$ extract xF_3 :

$$xF_3 = (\frac{Y_-^{820}}{Y_+^{820}} + \frac{Y_-^{920}}{Y_+^{920}})^{-1} \cdot (\frac{1}{Y_+^{920}} \cdot \tilde{\sigma} - \frac{1}{Y_+^{820}} \cdot \tilde{\sigma}^+)$$

NC e⁺p and e⁻p xF_3 at fixed Q²

QCD fit of fixed target and HERA data

pQCD is tested over \sim 4 orders of magnitude in Q²

- in e⁺ data at high Q², excess at $x \sim 0.4$ mainly due to events in 94-96 (e⁺) data sample
- wait for more statistics !

BSM : Contact Interactions

- High Q² domain : **the place** to look for New Physics, Beyond the Standard Model (BSM)
- Processes with characteristic energy scale $\Lambda >> \sqrt{S}$: parameterized as Contact Interactions CI

4-Fermion (*eeqq*) **CI** with effective coupling $\eta_{ij}^q = \epsilon_{ij}^q \frac{4\pi}{\Lambda^2}$ (Only vector terms considered ; scalar and tensor terms beyond sensitivity of HERA)

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \mathcal{L}_{\mathcal{CI}}$$

with
$$\mathcal{L}_{CI} = \Sigma \eta_{ij}^q (\overline{e}_i \gamma^{\mu} e_i) (\overline{q}_j \gamma_{\mu} q_j)$$

 $\epsilon^q_{ij}=\pm \ 1$ (allows positive or negative interference) i,j=L,R~~;~~q=u,d

 $|CI|^2$ + Interference \implies CI affect $d\sigma/dQ^2$ and $d\sigma/dx$

$$\implies$$
 Look for distorsions of Q^2 spectrum

 \implies Fit to $d\sigma/dQ^2$ yields limits on Λ

High Q² results from HERA - PIC2000

• show Λ values for best fit

- H1 limits from combined e^+p and e^-p data
- Similar results from ZEUS (e^+p) (other models also investigated)
- LEP (ALEPH) limits often more stringent (stronger hypotheses)

Status of HERA Searches for eq Resonances

Leptoquarks : Summary of Current Limits

Complementarity of HERA data with LEP and TeVatron

Charged Current Interactions (CC)

Focus on :

- e⁺p and e⁻p CC cross sections
- Propagator mass \implies determine M_W
- Quark antiquark composition

High Q² results from HERA - PIC2000

Signature : Missing P_T (ν) + Hadronic energy (jet)

Main Event Selection Criteria

- Missing $P_T : \mathbb{P}_T > \mathbb{P}_{Tmin}$
- Also vertex, timing, ...

Reconstruction largely based on hadronic calorimeter data

- $(E p_z)_{had}$ and $\mathbf{P}_{T,had} \Longrightarrow Q^2, x, y$
- Good understanding of hadronic energy scale is essential

Observe good agreement MC \iff Data

High Q^2 results from HERA - PIC2000

CC $d\sigma/dQ^2$ Compared to Standard Model

Compare NC and CC cross sections for e⁺-p and e⁻-p

For large Q² NC and CC cross sections of similar size

Test of EW Theory from CC $d\sigma/dQ^2$

CC $d\sigma/dQ^2$ cross section contains propagator term :

$$\frac{d\sigma}{dQ^2} \propto G_F^2 (\frac{M_W^2}{M_W^2 + Q^2})^2$$

 \implies Fit to \mathbf{Q}^2 dependence of CC $d\sigma/dQ^2$ gives \mathbf{M}_W

For fixed G_F (PDG value) :

$$M_{prop} = \begin{cases} 80.9 \pm 3.3(stat) \pm 1.7(syst) \pm 3.7(pdf) & \text{H1} \\ 81.4^{+2.7}_{-2.6}(stat) \pm 2.0(syst)^{+3.3}_{-3.0}(pdf) & \text{ZEUS} \end{cases}$$

 \hookrightarrow Good agreement of indirect determination (W space-like) with world average from direct determinations (W time-like)

 \Rightarrow Important test of the universality of the SM !

CC e⁺p and e⁻p $d\sigma/dx$

Parton Densities at High x

Define reduced cross section : $\tilde{\sigma}_{CC} = x \frac{2\pi}{G_F^2} \left(\frac{M_W^2 + Q^2}{M_W^2}\right)^2 \frac{d^2\sigma}{dx dQ^2}$ $\tilde{\sigma}_{NC}(e^+p) \sim \Phi_{NC} \sim (1+(1-y)^2) \Sigma e_i^2 x q_i$ $\tilde{\sigma}_{CC}(e^+p) \sim \Phi_{CC} \sim x\bar{u} + (1-y)^2 xd$ \rightarrow Extract u and d quark densities H1 e⁺p 94-97 x=0.25 x = 0.4⊕² 0.6 -----φ^u_{NC} ⊕² 0.6 Low Q^2 Fit Low Q^2 Fit NC NC 0.4 0.4 0.2 0.2 $0 \\ \oplus 0.6$ ϕ^{d}_{CC} ϕ^d_{CC} Low Q^2 Fit Low Q^2 Fit CC • CC • CC 0.4 0.2 0.2 0.1 $b \cdot x$ 0.8 $b \frac{b}{x} \frac{b}{0.6}$ 0 x∙u \boldsymbol{x} • U □ x·d $\Box \mathbf{x} \cdot \mathbf{d}$ 0.6 0.4 0.4 0.2 $x \cdot d$ 0.2 0 0 $10^{\overline{3}}$ 10⁴ 10³ 10 O^2/GeV^2 Q^2 / GeV^2 HERA upgrade welcome (more lumi)

W Production and Isolated Leptons

In the CC processes there is virtual W production.

At HERA, Ws can also be produced directly, mainly by :

 \hookrightarrow Cuts :

- $P_T(\text{calo}) > 25 \text{ GeV}$
- Track $P_T > 10 \text{ GeV}$
- The track is required to be isolated

Isolated Leptons

H1 : Extended (phase space) analysis + enhanced backgroun d rejection

High Q² results from HERA - PIC2000

'2000' Update on W & Isolated Leptons

H1: 3 new evts observed $(1 \mu, 2 e)$, all at large $P_{T,had}$:

H1 total (e^+ & e^-) with $P_{T,had} > 25$ GeV : Data / SM = 8 / 2.7 \pm 0.6

ZEUS: 6 new evts $(4 \mu, 2 e)$; compatible with SM:

H1 and ZEUS have accumulated $\sim 100 \text{ pb}^{-1}$ since 1994, thanks to the very good performance of HERA and the detectors in the last 2 years.

- Overall good agreement with Standard Model
 - \rightarrow NC and CC cross sections up to highest Q² $\rightarrow xF_3$
 - \rightarrow M_W from CC
 - \rightarrow u(x) & d(x) at high x (need higher \mathcal{L})
- Searches for New Physics
 → no signs of it
- Need more study of
 - \rightarrow NC DIS at highest \mathbf{Q}^2 and x
 - \rightarrow Isolated leptons

\implies The HERA upgrade is welcome

- HERA will stop in September for ≈ 9 months for an upgrade program aiming for a 5-fold increase in luminosity
- Both H1 and ZEUS detectors will be significantly modified to cope with the changes to the machine magnets and to upgrade their performance
- With the goal of ≃ 1 fb⁻¹, achievable till ca 2006, as well as the availability of electron (positron) polarization the prospects for getting many exciting results in the near future look good.